

Entity Quick Click: Rapid Text Copying
Based on Automatic Entity Extraction

Abstract
Retyping text phrases can be time consuming. As a
result, techniques for copying text from one software
application to another, such as copy-and-paste and
drag-and-drop are now commonplace. However, even
these techniques can be too slow in situations where
many phrases need to be copied. In the special case
where the phrases to be copied represent syntactically
identifiable entities, such as person names, company
names, telephone numbers, or street addresses, much
faster phrase copying is possible. We describe entity
quick click, an approach that reduces both the amount
of cursor travel and the number of button presses
needed to copy a phrase.

Keywords
Copying text, entity extraction, information extraction,
text editing, sensemaking, copy-and-paste

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g.,
HCI): User Interfaces – interaction styles. H.4.1.
Information systems applications: Office Automation –
word processing. Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

Eric A. Bier

Palo Alto Research Center, Inc.

3333 Coyote Hill Road

Palo Alto, CA 94304 USA

bier@parc.com

Edward W. Ishak

Columbia University

Department of Computer Science

1214 Amsterdam Ave.

450 CS Bldg

New York, NY 10027 USA

ishak@cs.columbia.edu

Ed Chi

Palo Alto Research Center, Inc.

3333 Coyote Hill Road

Palo Alto, CA 94304 USA

echi@parc.com

CHI 2006 · Work-in-Progress April 22-27, 2006 · Montréal, Québec, Canada

562

Introduction
Promising new interaction paradigms in document
manipulation are resulting from incorporating pattern
recognition and natural language technologies. Here
we describe a way to enhance copy-and-paste
operations with entity extraction technology. Copy-
and-paste and drag-and-drop are ubiquitous methods
for moving text from one computer application to
another. Using these methods a computer user can
transfer textual information without retyping it. This is
generally an advantage as retyping can introduce
errors, requires great user attention, and is slow.
Modern graphical interfaces apply these two methods to
move text between a broad range of software
applications, including Web browsers, document
editors, and spreadsheets. As a result, improvements
to these techniques have the potential to improve the
usability of many applications.

A small improvement in the speed of these techniques
(the number of copy-and-paste operations that can be
done per minute, for example) should have a small

quantitative effect on user productivity. Furthermore, a
large increase in the speed of these techniques (e.g., a
factor of 5 or more) could make a qualitative difference
in user performance for some applications. Previous
studies of the effects of system speed [7] have
demonstrated this kind of qualitative effect across
many time scales and applications. In the case of
copy-and-paste, a large speed-up might enable
applications, for example, in which the user extracts
many phrases from a document in order to add them to
a form, a database, or some other structured data
format. We have discovered the need for more rapid
copy-and-paste in our own research on tools that help
users take structured notes while reading through
many documents on a topic.

As commonly deployed copy-and-paste takes roughly
eight steps. Using a pointing device, the user moves a
cursor to the beginning of the text to be copied,
initiates a selection command, moves the cursor to the
end of the text to be copied, finalizes the selection,
initiates a copy operation, moves the cursor to the

Figure 1. Each time the user clicks on a highlighted phrase in the document, the phrase is copied to a receiving application. The
overlaid polyline shows one path that the cursor might take during the copying of the eight phrases shown.

CHI 2006 · Work-in-Progress April 22-27, 2006 · Montréal, Québec, Canada

563

place where the text is to go, initiates a cursor
placement command, and initiates a paste command.
Several steps here require moving the cursor to small
on-screen targets and attending to rapidly changing
feedback. In this paper, we describe a technique that
takes as few as two steps per copy operation and
provides larger target objects, which users can point to
more rapidly, as shown by studies related to the two-
dimensional extensions of Fitts’ Law [4].

To get a larger speed-up, we sacrifice the generality of
copy-and-paste in two ways. First, we assume that the
user will be copying phrases in natural language text
that describe an entity in a form that can be recognized
by a computer algorithm, such as person names, city
names, company names, telephone numbers, or street
addresses. Second, we assume that the application
receiving the phrases will keep track of where the
copied phrases should be inserted; it may have a
current insertion position, for example, or it may add
the phrases to a list as they come in. In cases where
one or both of these assumptions are false, our
technique degrades gracefully to traditional copy-and-
paste or drag-and-drop, as we will describe.

Single Word Quick Click
Before describing entity quick click, we describe a
simplified version of it, single word quick click. A user
of single word quick click identifies an application that
is to receive the copied text fragments. To be
concrete, let’s assume this application is a tool that
makes a list of all of the copied fragments. Next, the
user opens a document containing some natural
language text. The user holds down a modifier key
(e.g., the Shift key) to activate quick click. Then,
whenever the user wants to copy a word from the

document into the receiving application she moves the
cursor over the word and clicks a button (e.g., the left
mouse button). A copy of the word under the cursor is
immediately added to the receiving application.

After the set-up is done (opening the two applications
and depressing the Shift key), the cost of copying a
word to the receiving application is the cost of moving
the cursor and clicking a button. In this way, individual
words can be copied rapidly, with one click per word.
This is an improvement over applications that require a
double-click to select a word or that require additional
keystrokes to initiate copy, paste, or both.

Entity Quick Click
One limitation of single word quick click is that it only
copies individual words. It cannot copy a longer
phrase, a sentence, or a paragraph. We could add
additional steps to allow the user to specify the
beginning and end of the text string to be copied.
Instead, we took an approach that preserves the one-
click paradigm while allowing phrases to be copied.

The new idea is to run an algorithm over the text that
finds phrases that the user is likely to want to copy as a

Figure 2. The user copies non-highlighted words by clicking
on them. The overlaid polyline shows cursor movement.

CHI 2006 · Work-in-Progress April 22-27, 2006 · Montréal, Québec, Canada

564

unit. For example, a user extracting information from
news stories may be interested in the names of people
and companies involved, phone numbers to call, or
places where an event has taken place. Such phrases
can be found using information extraction technology.

In our system, entity phrases are extracted for all
documents before they are displayed to the user. If
desired, these phrases can be highlighted (e.g., with a
yellow background) as a way to draw the user’s eye to
important entities. Alternatively, the highlighting may
be shown only when the user is about to use entity
quick click to copy a phrase (e.g., when the Shift key is
down and the cursor is positioned over the document).

Entity quick click then works like single word quick click
when the user clicks on an unhighlighted word but has
a new behavior when the user clicks on a highlighted
phrase. In this new case, the indicated phrase is
copied and sent to the receiving application. For
example, Figure 1 shows a document with some of its
entity strings highlighted with a yellow background. If
the user moves the cursor along the path indicated by
the overlaid polyline, clicking at each vertex, eight
strings are sent to the receiving application, which
displays the copied phrases in a vertical list.

Copying arbitrary strings
In some cases, the user wants to copy a string that
does not correspond exactly to a phrase found by the
entity extractor. In these cases, entity quick click
degrades to a procedure that is more like traditional
copy-and-paste. If the string to be copied is a word,
and it is not part of one of the automatically extracted
phrases, the user clicks on it as for single word quick
click and it is copied, as illustrated in Figure 2. If the

string to be copied is a phrase but does not correspond
exactly to one of the highlighted phrases, the user
copies it by first selecting it (using whatever selection
mechanism is available in the tool displaying the source
document) and then holding down the Shift key and
clicking on any part of it. This works even if the word
that is clicked is part of an entity phrase because the
boundaries of the selected phrase are given
precedence. In Figure 3, for example, the user selects
the phrase “coming to PARC in 1976”, which includes
the extracted entity “1976”. The user then Shift-clicks
on the phrase to copy it to the receiving application.

Use with paste or drag-and-drop
As described so far, entity quick click assumes that the
receiving application will automatically place the copied
text strings. However, most modern commercial
applications expect to receive copied text from an
explicit paste or drag operation that specifies where the
copied text should be placed. With some loss in
efficiency, entity quick click can be used with these
applications as well. For example, after the quick click
is made on a desired phrase, that phrase can be placed
in the standard operating system cut buffer and then

Figure 3. The user selects the phrase “coming to PARC in
1976” and then clicks on it to copy it as a whole.

CHI 2006 · Work-in-Progress April 22-27, 2006 · Montréal, Québec, Canada

565

pasted into an application in the traditional way.
Alternatively, after selecting the desired phrase, the
user could also drag-and-drop the phrase into another
application in the traditional way.

Extensions
For some applications, having a single set of recognized
phrases may be too limiting. For example, the user
may wish to select person names, company names, and
locations at one time, but may wish to select
unrestricted noun phrases or some other text units at
another time. Entity quick click can be extended to
handle this case by providing multiple modes, one for
each way of recognizing phrases.

We also allow the user to extend the set of
automatically extracted phrases with a private
dictionary of additional phrases that should be
highlighted. One way to build this dictionary is to add
to it all words or phrases that are copied using entity
quick click but are not automatically extracted phrases.

Implementation
Entity quick click is written in Java. Users view
documents in the CorpusView reading environment [1].
Entity extraction is performed using the ANNIE
component of the University of Sheffield’s GATE [3].

Applications and Testing
We are developing entity quick click as part of a suite
of tools that help knowledge workers make sense of
information that is drawn from a large collection of
documents. Some important tasks in sensemaking
include discovering the names of important entities in
the topic being studied and how these entities are
related to each other. One of the tools in our suite,

Entity Workspace, acts as an electronic notebook for
collecting this information. Entity quick click is an
important component of this application, allowing entity
names to be gathered quickly so the knowledge worker
can make rapid progress.

We are applying this approach to build sensemaking
tools for intelligence analysts, patent attorneys, and
technology analysts. Ongoing work on entity quick
click includes testing it on knowledge workers
performing real tasks and comparing its performance to
related techniques for copying phrases.

Related work
The three main components of entity quick click are:
automatic entity extraction from documents, efficient
user interface for copying text strings, and automatic
highlighting of important words and phrases. In all
three areas, we are building on previous work.

A year ago, IT Professional estimated that there were
15 to 20 information extraction tools on the market [9].
Entity quick click can take advantage of the output of
any of these tools to improve the speed of text copying
(or selection) in the domains that these tools cover.

Efficient user interfaces for copying text strings have
been around for decades. For example, in 1984,
Teitelman described the design of the Tioga text editor
in the Cedar programming environment [10]. As in
entity quick click, the Tioga user would hold down a
Shift key and select a text object. The selected text
would then be copied to a previously-selected insertion
position in the same or some other document. Entity
quick click builds on this basic scheme by allowing an
entire phrase to be selected in a single click.

CHI 2006 · Work-in-Progress April 22-27, 2006 · Montréal, Québec, Canada

566

Stylos et al. [8] developed Citrine, a system that
extends traditional copy-and-paste by parsing the
copied text and pasting the structured information, for
example, into a form with many fields. However, this
system often requires training before it works as
desired. Entity quick click takes a different approach
that allows the user to visualize the results of parsing
by highlighting the extracted entities within the source
text before copying. This eliminates pasting of
undesired text and allows the user to choose a subset
of the fields found.

A number of systems have used automatic highlighting
of computed words or phrases to help readers find
information in a document. The ScentHighlights
technique [2] highlights both keywords that are related
to a set of search terms and their surrounding
sentences. XLibris [6] highlights phrases and
sentences that are characteristic of a document when
the user requests a skimming mode.

Finally, Miller created an editor, LAPIS, that uses
pattern recognition approaches to identify repeated
patterns during editing tasks [5]. In his system, edits
to a single line of source code could be propagated to
other lines with similar structures nearby. As in LAPIS,
our tool finds text strings that match a pattern;
however, our tool is used during reading rather than
editing and focuses on copying the matching strings.

Acknowledgments
This research was funded in part by the Advanced
Research and Development Activity ARIVA program
(MDA904-03-C-0404).

References
[1] Eric Bier, Lance Good, Kris Popat, and Alan
Newberger. A document corpus browser for in-depth
reading. Proceedings of the 2004 Joint ACM/IEEE
Conference on Digital Libraries (JCDL), 2004, 87-96.

[2] Ed H. Chi, Lichan Hong, Michelle Gumbrecht, Stuart
K. Card. ScentHighlights: highlighting conceptually-
related sentences during reading. Proceedings of
IUI’05, 2005, 272-274.

[3] Hamish Cunningham. GATE, a general architecture
for text Engineering. Computers and the Humanities,
Volume 36, Issue 2, May 2002, pages 223–254.

[4] I. Scott MacKenzie and William Buxton. Extending
Fitts' law to two-dimensional tasks. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, 1992, 219-226.

[5] Robert C. Miller and Brad A. Myers. Multiple
selections in smart text editing. Proceedings of the 6th
International Conference on Intelligent User Interfaces
(IUI 2002), 2002, 103-110.

[6] Bill N. Schilit, Morgan N. Price, Gene Golovchinsky.
Digital library information appliances. Digital Libraries
’98, 1998, 217-226.

[7] Ben Shneiderman. Response time and display rate
in human performance with computers. ACM Computing
Surveys Volume 16, Issue 3 (Sep. 1984), 265-285.

[8] Jeffrey Stylos, Brad A. Myers, Andrew Faulring.
Citrine: providing intelligent copy-and-paste.
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2004), 2004, 185-188.

[9] Sarah M. Taylor. Information extraction tools:
deciphering human language. IT Professional,
Volume 6, Number 6, 2004, 28-34.

[10] Warren Teitelman. A tour through Cedar.
Proceedings of the 7th international Conference on
Software Engineering, 1984, 181-195.

CHI 2006 · Work-in-Progress April 22-27, 2006 · Montréal, Québec, Canada

567

