
 (a) (b)
Figure 1: window rendered (a) without free-
space transparency, and (b) with free-space
transparency exposing content underneath.

Copyright line goes here

Free-Space Transparency: Exposing Hidden Content
Through Unimportant Screen Space

Edward W. Ishak Steven K. Feiner
Columbia University, Department of Computer Science

New York, NY 10027
Email: {ishak, feiner}@cs.columbia.edu

ABSTRACT
We present free-space transparency, a method that renders
unimportant regions of a window as transparent. This al-
lows users to view screen content that lies beneath these
regions. By maximizing the amount of simultaneously
visible content, while keeping window sizes and locations
constant, users can be made more productive with minimal
window layout manipulation.

KEYWORDS: Transparency, screen space.

INTRODUCTION
Computer users often move, resize, or “alt-tab” between
windows to expose desired content that is currently ob-
structed by other windows. To maximize visibility, users
sometimes resort to using layout managers that cascade or
tile windows automatically. This potentially moves or re-
sizes each window without regard to its content, which is
not desirable if certain windows need to display more con-
tent than others or require a specific aspect ratio. Some
have addressed these problems by rendering the entire win-
dow and its content as transparent [1] or with manually
controlled “magic lenses” to view obscured content [2]. In
Macintosh OS X, a text-only terminal window can have an
opaque foreground color and a transparent background
color [3]. We present free-space transparency, which gen-
eralizes this last approach to support windows with arbi-
trary contents that render important regions opaquely and
unimportant regions with a smooth transition from opaque
to transparent, as shown in Figure 1. This guarantees that
important content will be readable at all times, while si-
multaneously exposing hidden content underneath the un-
important regions.

IMPORTANT VS. UNIMPORTANT REGIONS
In implementing free-space transparency, it is necessary to
determine which regions of a window are important and
which are unimportant. We have considered several ap-
proaches. The rendering engine can classify window re-

gions containing only a particular background color or
texture as unimportant. Alternatively, the window’s appli-
cation can inform the rendering engine of the unimportant
regions, as in our implementation. The user might also
identify unimportant regions manually with a mouse, or
automatically by using an eye tracker to detect window
regions that do not attract the user’s attention.

TILE COLORING
Our implementation of free-space transparency uses a tile-
coloring process to determine the opacity value of each
pixel. Every window is divided into a uniform grid of tiles.
Then, each tile is classified into one of three categories (as
described below). It is drawn either opaque, transparent, or
with a linear gradient between opacity and transparency.
Rather than classifying each pixel individually, we classify
a tile at a time to optimize the classification process.

Since users frequently interact with window decoration
(title bar, menus, border), we consider this important con-
tent and do not include it as part of any tile. For this rea-
son, pixels that make up these regions are rendered opaque
at all times. Therefore, tiles make up only the window
body. Rendering the window decoration opaque allows the
user to disambiguate window boundaries more easily, as in
the Macintosh terminal window.

Classifying Tiles
Determining the category into which each tile falls is a
three-stage process. First, tiles containing “important”
content are painted opaque. Then, all remaining tiles adja-
cent to opaque tiles are painted with a linear opaque-

 (a) (b)
Figure 2: Free-space transparency windows. Grid
lines have been added to show tiling. (a) Large
gradient tiles expose minimal content underneath,
but with smoother transitions. (b) Small gradient
tiles expose more content, but with sharper tran-
sitions.

transparent gradient. This provides a smooth transition
between entirely opaque and entirely transparent tiles. Fi-
nally, all remaining tiles are rendered transparent. Note
that no tile is painted 100% transparent since it would com-
pletely expose the pixels underneath. This is undesirable
since this content could be mistakenly perceived as part of
the overlaid window. We have found that an 85% transpar-
ency value works quite well.

Rendering Gradient Tiles
It is important that the opaque-to-transparent transition be
smooth and appealing to the user’s eyes. An abrupt
opaque-transparent boundary line could imply a separation
of the opaque and transparent sections, leading the user to
believe that one window is actually divided into multiple
objects. Currently, the tile-coloring process gracefully
transitions the opaque to the transparent tiles while also
allowing for holes and concavities in the opaque tile re-
gions. A gradient tile is rendered by setting a transparency
value for each of its four vertices and using interpolation
shading (a GradientPaint in our Java2D implementation).
Each vertex adjacent to an important tile is given a trans-
parency of zero (fully opaque), and all remaining vertices
are given the maximum transparency value.

We tested the tile-coloring algorithm with different grid
size tiles. Since exactly one tile is used for rendering the
gradient between opaque and transparent regions, smaller
tiles produce a smaller gradient that renders a sharper
opaque-transparent boundary, whereas larger tiles produce
a more gradual and unobtrusive transition. However, since
larger tiles produce larger gradients, they consequently pro-
duce less transparent regions, therefore exposing less con-
tent underneath (see Figure 2).

CURRENT AND FUTURE WORK
We have a developed an application that allows users to
instantiate within it windows containing icons, text, and
images. Users can drag icons from one window to another,
thus dynamically creating and destroying unimportant
screen space. Currently, every tile is the exact same size,
independent of window content. We are considering com-
bining tiles of varying sizes and dimensions to more accu-
rately represent important content regions. Instead of linear
gradients spanning one tile length, we are considering non-
linear gradients spanning multiple tiles to produce a more
gradual transition between opaque and transparent regions.
Additionally, we will investigate using Bezier curves to
help define the opaque-transparent boundaries.

Content Disambiguation
A potential problem is the user’s inability to disambiguate
the content of an overlaid window from content underneath
exposed by free-space transparency. Several techniques
could help make this clearer. One possibility is to render
the overlaid content in full color, and content underneath in

grayscale or in a specific tint. Content underneath could
also be rendered slightly blurred to give the perception that
it is being viewed through a semi-transparent medium [4].
Although these approaches may not allow the user to view
details of the content underneath, they allow the user to
have an adequate visual understanding of this material
while easily disambiguating it from overlaid material.

Interaction Techniques
Various interaction techniques can be applied in conjunc-
tion with free-space transparency to make maximum use of
its capabilities. We are currently implementing techniques
that allow the user to interact with obstructed content
through the transparent regions of the overlaid content
without relocating or resizing any window. This would
make free-space transparency much more useful and desir-
able, allowing the user to interact with any window from
fully viewable to fully obstructed.

ACKNOWLEDGMENTS
This research was funded in part by Office of Naval Re-
search Contracts N00014-99-1-0249 and N00014-99-1-
0394, NSF Grant IIS-00-82961 and IIS-01-21239, and gifts
from Intel and Microsoft Research.

REFERENCES
1. NVIDIA nView Technology, Advanced Window and Menu

Effects, http://www.nvidia.com/docs/lo/1457/SUPP/
Q4_nView.jb2_final.pdf.

2. Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton,
and Tony D. DeRose. Toolglass and Magic Lenses: The See
Through Interface. Proceedings of Siggraph 93 (Anaheim,
August), Computer Graphics Annual Conference Series,
ACM, 1993, pages 73-80.

3. Apple Computer, Mac OS X Terminal Window,
http://www.apple.com/macosx/jaguar/unix.html.

4. Robert Kosara, Silvia Miksch, and Helwig Hauser. Semantic
Depth of Field. In IEEE Symposium on Information Visuali-
zation (2001), San Diego, CA, USA, October 22-23 2001.
pages 97-104.

